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Abstract

When air is blown strongly through a straw and across a hole in a hollow sphere, a high-pitched whistling sound is 
heard. This paper tests two models, Helmholtz Resonance and Spherical Harmonics, to determine which most 
accurately models this phenomenon. This was done by measuring the frequencies produced when air was blown across 
identical spheres with different hole sizes,  as well as across spheres of different volumes with identical holes. The 
frequencies were found to closely match frequencies predicted by spherical harmonics.    

Introduction

Some websites claim that whistling and whistles operate as Helmholtz resonators1,2. If a whistle is 
blown softly  then a certain frequency is produced, however if the whistle is blown harder, then a 
louder, higher frequency sound can be produced. The soft, low frequency, sound produced when air 
is blown across a hollow sphere with a hole in it has been shown to be accurately  modeled by 
Helmholtz resonance.3 Here we investigate the high frequency sound produced from blowing hard 
on a hollow sphere with a hole in it. The effect of the hole and its size on the frequencies produced 
will be investigated.  It will be determined if this higher frequency sound can be modeled by 

Helmholtz resonance.

An alternate model, the applicability  of which will 
be tested, is spherical harmonics. Spherical 
harmonics explain the noise created as a standing 
wave within the sphere.  The “white” noise of the 
air being blown into the hole creates a standing 
sound wave inside the cavity with the frequencies 
present depending on the dimensions of the 
cavity. To test if spherical harmonics govern this 
phenomenon the frequencies produced by hollow 
spheres of differing volume will be analyzed.

For this investigation the equations for finding the 
speed of sound can be used with a known sound 
velocity to calculate the frequency assuming 
spherical harmonics. 
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Figure 1 The different shapes of the harmonics of a 
spherical cavity for the three lowest mode indices are 
indicated below the figures in (n ,l ,m).  Each row 
represents a different harmonic, and thus each row has 
a different frequency.  The phase of the oscillation is 
indicated by the plus or minus signs.5      
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The simplified equation for finding the speed of sound in a sphere if the volume is known and the 
frequency is found, is:

 
Equation 14

Where fln is the frequency, zln represents discrete harmonics created by  three-dimensional harmonic 
shapes, c is the speed of sound, and r is the radius of the spherical cavity. The harmonics recorded 
are determined by the vector coordinates, and the number of modes in the sphere as in figure 1.  

Methods

A circular hole of diameter 6.4 mm was drilled in six hollow plastic spheres with volumes ranging 
from 26ml to 1135ml and average wall thickness of .0005m ± .0003.   A microphone was connected 
to a computer and set at a data collection rate of 100,000 samples per second for 0.5 seconds.  Air 
was blown strongly through a straw and across the hole in the sphere at an angle such that a high-
pitched whistling sound was made. The sound was recorded on the computer and an FFT graph was 
produced.  This was done 6 times for each of the six spheres.  It  was noted that a lower frequency 
could be obtained under these conditions by  blowing more softly, but this frequency was not 
studied.

To test the effect of the diameter of the hole on the resonant frequencies produced, six identical 
hollow, plastic spheres with a volume of 220ml ± 10 and a wall thickness of 0.00035m ± 0.00005 
were drilled with hole diameters ranging from 5.0mm ± 0.5 to 13.0mm ± 0.5.  The previous method 
was again used to record the frequency  produced by  each of the six spheres with differing hole 
sizes.

The temperature of the air in the room was 27°C ± 1 whereas the temperature of the air inside the 
sphere while being blown was 32°C ± 2. The speed of sound6 in the sphere was calculated to be 
350m/s ± 3. 

Results & Discussion

In figure 2, the relationship between the 
period of the sound and the volume of the 
cavity is shown, to test if the relationship 
predicted by the Helmholtz equation 
describes this phenomenon.7 Not only  does 
the best proportional fit not pass through a 
s ingle point or i t s e r ror bars , the   
proportionality constant is very different than 
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Figure 2 The average period squared of the sound produced     
as compared to the volume of the sphere producing the sound.  
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that predicted by the Helmholtz equation.  Using the given constants, the predicted slope is 500 × 
10-4  s2m-3, compared to the slope of the best fit line of 2.9 ×10-4 s2/m3.  This clearly  indicates that 
this phenomenon is not accurately modeled by the Helmholtz equation.     

Figure 3 is a sample FFT graph of the 
recorded sound. The multiple harmonics 
produced provide further evidence that 
Helmholtz Resonance does not describe 
the higher, whistling frequencies, as the 
Helmholtz model predicts no harmonics. 
As it has been shown that Helmholtz 
resonance does not correctly describe the 
high-pitched whistle phenomenon, 
spherical harmonics will be tested for 
validity  as a model for the phenomenon 
investigated.  

It is known that the spherical harmonic equations describe an inversely proportional relationship 
between the radius of the sphere and the frequency of the harmonics.5 Theoretical frequencies for a 
sphere of radius 0.116 m were obtained5 and used to determine the theoretical spherical harmonic 
frequencies for a sphere of radius 0.037 
m. The predicted frequencies of all of the 
possible harmonics produced from the 
sphere were then compared to the found 
frequencies. Figure 4 clearly  shows that 
spherical harmonics accurately models 
the phenomenon investigated, as the 
points of the measured periods and the 
predicted periods are very  close together. 
All of the periods experimentally  found 
a r e s l i g h t l y l o w e r t h a n t h e i r 
corresponding theoretical frequency.  
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Figure 3 the frequency as compared to the amplitude of the 
sound made by the 217 ml sphere with the 4mm radius hole

Figure 4 The periods of sound produced by the spheres and the 
theoretical periods as predicted by spherical harmonics, as 
compared to the radii of the balls, for the first resonance mode. 
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Given that the equation used to calculate 
the frequencies of the spherical harmonics 
assumed a sealed sphere, it is possible 
that the slight difference may be due to 
the hole in the sphere wall.  Figure 5 
shows that the frequency is not greatly 
affected by the hole size. Though there is 
a small increase with increasing hole 
diameter, the total change in frequency is 
less than 2%.

Finally, in figure 6 the recorded 
f requency i s compared to the 
theoretical frequency  for the most 
prominent four resonant modes of 
spherical harmonics.  It  can be seen that 
the average values are very close to the 
theoretical values predicted for those 
harmonics. 

It is interesting to note that the lower 
frequencies predicted by Helmholtz 
resonance were occasionally detected 
in some of the graphs.  However few 
graphs showed a clear peak at the 
Helmholtz resonance frequency.  Also, 
only for the smallest  three hole sizes 
were peaks detected at the frequency 
predicted by the Helmholtz equation.

Another issue that should be noted is the fact that each of the trials gave a noticeably different FFT 
graph.  The relative amplitudes of each of the modes of resonance were different each time, and in 
some cases, some modes were not detected. Since the straw was held by hand, and blown with the 
mouth, this suggests that the angle and velocity of the airflow could be an important factor in 
determining which of the resonance modes is present and which has the highest amplitude.  It is 
suggested that a mechanical blowing apparatus be constructed so that  the effect of wind angle and 
velocity could be investigated.
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Figure 6 The variation between the recorded value (black) and the 
theoretical values (blue) of the frequencies for several modal shapes 
(x-axis).  The recorded values represent the average frequency 
produced by the different hole sizes for the sphere with a volume of 
217 ml. 

Figure 5 The average frequency of 
sound produced for the first 
harmonic mode, against the radius 
of the hole in the ball at which the 
sound was produced. 
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Conclusion 

The spherical harmonic theory seems to accurately  describe the phenomenon of the high-pitched 
whistling heard when air is blown strongly  across a hole in a hollow sphere. It has been shown that 
this phenomenon is not modeled by the Helmholtz resonance equation. As all resonant frequencies 
measured were slightly lower than the predicted values, it appears that the presence of the hole 
causes the frequency  to be lower than theoretical predictions.  However, as the diameter of the hole 
increases it seems that the frequency increases as well, bringing the frequency  produced closer to 
the theoretical values for all but the first harmonic. 
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