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Abstract 
 
A can-telephone is a device consisting of two cans connected by a string through each base. The relationship 
between the input frequency and the intensity of the transmitted sound was investigated. Frequencies from 230  to 
1370 Hz were tested. The system was found to follow the properties of a simple harmonic oscillator in relation to 
intensity and frequency, causing the maximum transmitted intensity to appear when the input frequency was close to 
the resonant frequency of the bases of the cans. 
 
 
Introduction 
 
A can-telephone consists of two cans with their bases 
facing each other, with each base attached to one end of a 
string which is stretched between the cans. Sound 
entering the first can causes the base of that can to 
oscillate. The oscillation of this base creates longitudinal 
waves in the taut string, which force the base of the 
second can to oscillate at the same frequency as the 
sound. Victoria Prinz noted that for a given frequency the 
tension in the string affected the transmission intensity 
through the can-telephone, but was unable to determine 
the reason.[1] 

 
When an elastic object is driven by an external periodic force, the frequency of the oscillation of 
the object is determined by the frequency of the driving force.  The intensity of a driven 
oscillation varies depending on the proximity of the driving frequency to the natural resonant 
frequency of the object. The equation for amplitude as a function of frequency in a linear 
oscillator is 
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whereγ  is the damping constant,  ω  is the driving angular frequency, 0ω  is the resonant angular 

frequency, 0x  is the amplitude of the driven oscillation, and 0X the amplitude of the driver. Using 
the fact that intensity is proportional to amplitude squared, equation 1 can be rearranged to give  

 

	
  
 

Figure 1 The cans used	
  

(Equation 1)[2]	
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where f is driving frequency, f0 is resonant frequency, 2

II  is input intensity and 2
TI is transmitted 

intensity. 
 
In the can-telephone system, the bases of each can are expected to act as linear oscillators, 
experiencing a restoring force as they are displaced by the input sound and the fishing line. The 
transmission intensity for the system would then be determined by the natural resonant 
frequencies of the can bases and the frequency of the input sound, as in equation 2. 
 
 
Method 
 
The can-telephone used was constructed by puncturing holes in the center of the base of each 
can, threading through fishing line, and tying a knot at the end of line.The cans used had 
cylindrical cardboard walls, with a circular metal base.The length of the fishing line used was 
162.0 ± 0.2cm, the diameter of the base of the can was 7.7 ± 0.1cm,  

 
    Figure 2  The experimental apparatus.	
  

In reference to figure 2, the weight and pulley on the end of the string attached to the second can 
was used to put 5.39N±0.01N of tension on the fishing line and the bases of the cans. The 
tension force on the bases of the cans also affects their natural resonant frequencies, so the mass 
was used to keep the tension constant and quantifiable. The speaker attached to the freqency 
generator was suspended inside the first can without contacting it, and used to generate the input 
sound for the can-telephone at different frequencies. Altering the frequency of the frequency 
generator also affected the intensity of the sound, so a decibel meter was placed inside the can at 
a fixed location and the output of the speaker was adjusted to keep the decibel level constant. 
The pressure microphone in the second can was also suspended without contacting the can, and 
was used to measure sound pressure received in the second can, which was converted to 
intensity. 
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Sound with a constant intensity at 9 frequencies ranging from 229.4Hz to 1373.3Hz was played 
into the first can, and the transmitted sound was recorded using the pressure microphone, with  
an experimental uncertainty of ±7 µWm-2. Each frequency was tested 3 times. 
 
The frequency of the sound was determined by performing an FFT on pressure data from the 
microphone, and had anuncertainty of ±0.2 Hz. Pressure data from the microphone was 
converted to intensity through the equation 
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where I is intensity,  ρ is the mass density of air, v is the speed of sound in air and P is the 
pressure measured by the microphone. 
 
To ensure equation 2 was applicable to the bases of the cans, it was determined experimentally 
that they followed Hooke’s law. One can was suspended vertically, and a force probe and 
various masses were hung from the fishing line strung through its base. Varying the force across 
10 values from 0 to 15N, the displacement at the center of the base was measured using vernier 
calipers. The natural resonant frequency of the bases was also found by recording the sound 
produced when the base of the can was struck with no tension on the string. 
 
 
Results and Discussion 
 
Figure 3 shows that the cans approximately follow Hooke’s law, in that the displacement of the 
base is proportional to the force on the base, meaning equation 2 may apply to them. 
 
Figure 4 shows the relationship between source frequency and transmitted intensity is 
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The relationship follows equation 2 as 
predicted. The constant -21.01µWm  
however, depends on at least two 
factors, the initial intensity of the 
sound produced by the speaker in the 
first can and a constant representing 
energy loss during transmission 
through the system. The points in 
Figure 3 exhibit a peak of intensity as 
the driving frequency gets closer to 
the natural resonant frequencies of the 
bases of the cans. The frequency 

	
  
Figure 3 Force on the base of the can vs. displacement of the base. 

(Equation 3)[3]	
  

(Equation 4)	
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which produces the maximum 
intensity given by the fit is 520 ± 
4Hz. For the first can in the system, 
the natural resonant frequency of 
the base was 548.9 ± 0.4Hz. For the 
second can in the system, the 
receiving can, the resonant 
frequency was 515 ± 3Hz. While 
the resonant frequencies of the two 
cans differed slightly, a possible 
peak for intensity would likely lie 
somewhere between the two 
frequencies, or around 530 ± 10Hz. 
The resonant frequency of the 
second can is the same within 
uncertainties as the frequency which 
produces the maximum intensity. 
This suggests that the second can 
has greater significance in determining the frequency that produces the maximum intensity in the 
can-telephones. Further research, including switching the transmitting and receiving cans would 
be needed to further understand this relationship. 
 
It must be noted that when measuring the natural resonant frequency of the base of the cans, it 
was found that the force on the string through the base affected the natural resonant frequency of 
the base of the cans, with higher forces causing lower resonant frequencies. Also, it was found 
that even with no force on the base of the can, the orientation of the can affected the resonant 
frequency. In the case investigated in this lab, the cans were horizontal (the base being vertical), 
so the natural resonant frequency was measured with the cans horizontal. More research would 
be required to determine the nature of these phenomena. 
 
An issue which affects the certainty and applicability of equation 3 is the number of data points 
close to the peak of intensity in figure 4. While there are 9 total points of data, there are only two 
data points close to the natural resonant frequency, and both of these points are at frequencies 
lower than the natural resonant frequency.  It is recommended that this investigation be repeated 
with many more measurements near the peak frequency. It would also be valuable to investigate 
how tension on the string affects the intensity of transmission of the sound.  
 

Conclusion 
 
The relationship between driving frequency and intensity of a sound wave propagated through a 
can-telephone system follows the model of a driven linear oscillator. Maximum transmitted 
intensity occurs when the driving frequency is equal to the natural resonant frequency of the 
bases of the cans. For the specific can-telephone system used in this experiment, a driving 
frequency of 517±4 Hz causes the maximum intensity of sound received at the second can to be 
equal, within uncertainties, to the natural resonant frequency of the bases of the cans. 

	
  
 

Figure 4 A relationship between source frequency and received 
intensity is shown, with equation 1 fit to the data, where B is the 
frequency of maximum transmission.	
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